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A TUNABLE COMPACT HIGH POWER

FAR-INFRARED GRATING FREE-ELECTRON LASER

I. Introduction

High-power generators of coherent radiation in the infrared (IR) are under consid-

eration in a number of laboratories. An example of this is a free-electron source

of radiation based on the Smith-Purcell mechanism.' In a free-electron laser (FEL)

based on the Smith-Purcell mechanism an electron beam interacts with the slow-

wave structure of a metallic grating. The interaction leads to bunching of the beam

and amplification of radiation."- 5 Since only moderate energy (< few MeV) elec-

tron beams are required, the grating FEL has the potential of developing into a

truly compact, benchtop source of IR radiation.

In Ref. 15 an analysis of a grating FEL in planar geometry, employing a sheet

electron beam of finite thickness, has been presented. Experiments at the Naval

Research Laboratory with sheet beam configurations have been hampered by defor-

mation and warping at the beam edges. New experiments, using annular electron

beams to avoid edge problems, are presently underway, aimed at the generation

of far-IR radiation. To increase the power handling capability, large, overmoded

structures (i.e., with waveguide radius > free-space wavelength) are adopted. This

is referred to as multiwave operation.

A schematic of the experimental set-up is shown in Fig. 1. A hollow, cylindrical

electron beam from a cold, field-emission gun is made to pass through a coaxial

waveguide, the central conductor being in the form of a grating. The entire system,

inclucing the dlectron gun, is immersed in a uniform axial magnetic field in order

to achieve confined flow of the beam. The discussion here is linit'2d to the case

Manuscrpt approved August 13. 1993.



in which the electrons interact with a spatial harmonic whose group velocity is

nearly zero and consequently the energy drained from the radiation field is reduced.

This is illustrated in Fig. 2 which indicates one branch of the Brillouin diagram

for the three lowest spatial harmonics of a coaxial resonator with a smooth outer

conductor and a corrugated central conductor. Outcoupling may be accomplished

by diffraction (quasioptical).

A linear and a fully nonlinear analysis of an annular electron beam grating FEL

with allowance for electron beam emittance and gyromotion in a guide magnetic

field is presented here. The model is used to obtain design parameters for exper-

iments aimed at the generation of 45 pum radiation using a 105 kV beam. The

efficiency is determined by means of numerical simulation and compared with an-

alytical estimates. Tuning characteristics of this source over the wavelength band

35-55 jm are presented.
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II. Electronic and Circuit Equations

The purpose of this section is to derive the equations that describe the motion of

electrons in the electromagnetic field inside an open resonator formed by a coaxial

waveguide with a corrugated center conductor, the entire system, including the elec-

tron gun, being immersed in an axial magnetic guide field. Cylindrical coordinates

are denoted by (r, w, z) with the z axis lying along the axis of the waveguide. (Fig.

1.) The discussion is limited to TM modes since the electrons streaming through the

resonator are expected to interact strongly with axial electric fields. For simplicity,

only azimuthally symmetric TM0,. modes are considered.

A. Circuit Dispersion Relation

The z component of the resonator electric field can be written as

E,(r,z,t) = E((r, z) exp(-iwt) + c.c., (1)

where w = 27 c/A is the frequency, A is the free-space wavelength and E,(r,z)

represents the spatial variation of the field. In the region above the grating surface

and bounded by the outer conductor, r, __ r < R, E, is expressed as a sum of all

the even spatial harmonics:

E.(r, z) = AoJo(kor) + BoYo(kor) + • cos(2v n zid) [AnIo(rnr) + B.K o(fCnr)], (2)
n=1

where d is the grating pitch, J0 and Y0 are the ordinary Bessel functions of first

and second kind, respectively, of order 0 and I0 and K0 are the modified Bessel
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functions of first and second kind, respectively, of order 0. In Eq. (2) Ao and B0 are

the amplitudes of the n = 0 (i.e., fundamental) spatial harmonic, with wavenumber

k0 and An and BE are the amplitudes of the nth spatial harmonic, with wavenumber

r.n. The wavenumbers 1o and r, will be identified presently.

The simplest solution in the region r, - b < r < r,,, where b is the corrugation

depth, is a TEM standing wave in each slot:"s

E.(r) = CoJo(kor) + DoYo(kor). (3)

The assumption of a TEM mode in the slots is strictly valid for s <K A, where a is

the groove width.

The other relevant components of the electromagnetic field (i.e., B, and E,)

may be obtained from Maxwell's equations. It follows from the wave equation that

ko = w1c and

r. = [(27rn/d)'- (WI/c)211/ , (n = 1,2,3,...).

From the boundary condition on E, one can express all the amplitudes in terms

of Ao; in particular,

sin(7rns/d) Jo(korg)- ! ý- Yo(korg)
,n_=__ YO(ko (4)

A1.= A rna/d Io(xnr~, -___ (4)- n ,
Ko ,R) 0n0

Bn =- -A go(K.lR) (5)

Jo(rkR)

BO= - A-Jo . (6)
YO( koR)



Finally, from the continuity condition on B. one obtains the dispersion relation for

the circuit:

J1 (kor 9)_ yn.r MYo(k 0) • 9 ) _/ J1 (kor9 ) - -____(_-__vrL_
Y i ( 4.r .) d i4#J(kor kY [,o(,.-b)] kot JI;

oA 1o r R

JOAOrg) Yo(koR)YkDr) AJkow O-ug y~g No(Ie 4 y-b)I 0 ,U

2,=, ,S(,•,-)- - ' CK 0( ma/d (7)

All the waveguide dimensions is this expression may be scaled to the grating pitch,

d, and the transcendental equation solved for kod.

In the following it will be assumed that only the n = 1 spatial harmonic is

resonant with the electrons and therefore the only relevant component of the slow-

wave structure. That is, A/d z 1//3m, where / = v,/c is the ratio of the axial

electron velocity to the speed of light. This permits us to disregard the interaction

of all but the n = 1 spatial harmonic with the electrons.

B. Synchrotron and Betatron Equations of Motion

In the synchrotron phase space, the equations of motion of the jth electron, of

charge -lel and rest mass m, interacting with the n = 1 spatial harmonic are given

by

d~j - 2,,c/, - w, (8)
dt

dIj lel"z[AIo(lr•,) +BKo(Klrj)]exp(i'5j)+ o + c.c., (9)
dt 2mc

where Oj = 21rzj/d - wt and v1 is the electron velocity in the (r, p) plane.
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In the betatron phase space, it is assumed that the motion of the electrons is not

directly affected by the radiation field. The forces in the betatron phase space arise

from the self-electric and -magnetic fields plus that due to the axial guide magnetic

field, B0. Since the radius of the electron beam, rb, is much greater than the width

of the electron beam, Arb, or the electron gyroradius, it is permissible to consider

the hollow cylindrical beam to constitute an infinite strip beam. For a strip beam

the equations of motion of an electron are

&Z_ - = - d- (10)

-= 11 (11)

where z -rb, y z rb&o, f0l = IelBo/-ymc is the relativistic gyrofrequency in the

guide field, -y = (1 - v2 /c2)-1/ 2 , 11b = (47mbel2/._r.M)112 is the relativistic plasma

frequency and nb is the beam density. The electrons are emitted from the surface

of an immersed cathode with finite emittance. Denoting the conserved canonical

momentum by Py = -rm(dy/dt - flo0), Eq. (10) simplifies to

&Pz floPy (12)
dt2  

7M (

where f12 = f12 _ f22. To solve Eq. (12) we put"7

z(t) = ýX(t) exp[i4(t) + 01 -nopy (13)

and substitute in to obtain equations for X(t) and qO(t). In Eq. (13) X and € are

the same for all electrons whereas 0 < ý < 1 and 0 < 0 < 27r are parameters that
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may be chosen to represent any desired distribution of electrons. The equations for

X and 4' are

d2X X + 2X = 0, (14)dt2 d

X2 dOd-i=• (15)

where e is the (unnormalized) emittance of the electron beam. Substituting Eq.

(15) into Eq. (14), one obtains an equation for the beam envelope:

Ld2X E2V2
t2- + 2X X3 -(16)

For a matched electron beam X(t) = Xb = constant and Eq. (16) may be solved to

obtain Xb = (CV'/f)1/2. Making use of this, the betatron motion is given by

x = t 22 cos(nlt + ) -(17)

T/f~jl2  ill~
1 - sin(f±t)+ a) -- t, (18)

where the last term in Eq. (18) represents the E x B precession in the azimuthal

direction. If to is the time at which the electron is born on the cathode, Eq. (17)

may be rewritten as

x = Xo + t ()T [cos(fZt + 6) - cos(flto + 6)],

where z0 is the z-coordinate of the electron on the cathode at the instant of emission.

It follows that the full width of the electron beam, Arb, is determined by i) The

spread in xo, i.e., the region of beam formation on the cathode and ii) By the
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emittance, through (ev,/ft) 1 2 . Note that in the limit fio > f(b the width Xb is

determined by the normalized emittance, -yf•ic.

Finite emittance causes inhomogeneous broadening of the emitted radiation

which, upon using Eq. (8), is expressible as

where 6,6 is the spread in 6,. Noting "hat v' = -_ v2, where v is the electron

speed and v2 = [(dx/dt)2 + (dy/dt)2 ], it follows that I < 6v, > < v2 > /2v,

where <> indicates an average over the electron distribution. Next, evaluating v1

with the aid of Eqs. (17) and (18) one ootains

-+0 (19)

where it has been assumed that • is uniformly distributed in the interval [0,1j. Note

that the spread in the axial energy, < -y, > mc 2, is obtained from the relation

t5 =

Equations (8), (9), (17) and (IS) form a dosed system of equations for the

analysis of the electron dynamics. They form the basis for the numerical results

presented in Sec. III. It is useful at this point to derive the 'pendulum' equation"8

for the phase by neglecting the betatron motion. Setting v1 = 0 and -y = 7,, Eqs.

(8) and (9) can be combined into a single equation for Vkj:

d 2 1pi..je- [AI0( , A + +c. (20)
dt 2  

7%md
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Equation (20) shows that the motion of an -lectron consists of synchrotron oscilla-

tions which take place in the potential well formed by the electric field of the spatial

harmonic.

C. Power

The small-signal analysis of Eq. (20) proceeds by taking A,, B, and -f as constants

and solving the equation iteratively, assuming that the right-hand side is a small

term. From the small-signal analysis, the power radiated by an electron beam of

thickness Arb is given by'"'

dt w- Lo g(E), A---r I3E11, (21)

where Io = 1.7 x 10W, Ih[A] is the beam current in Amperes, g(e) =- d(sin e/e)2 /de,

19 = w -r LZ(22)

L, is the interaction length along the z axis and E,1 is the term corresponding to

n = 1 in the summation in Eq. (2).

D. Start-Oscillation Condition and Gain

In the configuration indicated in Fig. 1 the coaxial waveguide forms an open res-

onator oscillator. If QL denotes the loaded quality factor of the resonator, the

start-oscillation condition is expressed by

d - Erd, (23)
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where 4,, the total radiation energy stored in the optical cavity, is'" by

4 d L,(R - r)f A2  ± 0 koA, f[ 2nir ) 2 sinh[2ir,(R - ro)I ~( ,0 2irk0  sin 2 (koR n- I) 2r [kxn 2rnd - r.) ~ j
(24)

In writing Eq. (24) the contribution of the field energy in the grating slots has

been omitted. The loaded Q is supposed to include Ohmic losses, diffraction losses,

scattering losses due to imperfections and outcoupling. According to an earlier

assumption only the n = 1 spatial harmonic is strongly driven by the electron

beam. Noting that r.?(R - rg) >> 1, with the aid of Eq. (4) we identify the first

term in Eq. (24) as the predominant contribution in the expression for C_.4. Making

use of Eqs. (4), (21), (23) and (24) one obtains an estimate for the st .rt-oscillation

current which, for ko(r, - b) > 1, is expressible in the form

I .2,Arbr (#.3Y.) 3  7 i/d 2 exp[2K,(R - r,)]
Ib[AI 2OO(-Inn L,.2) L sin 2 "l,(R - r,)] sin(irs/d) j f+A. -sinh 2[l.(R-r)]'

(25)

The integral in Eq. (25) is expressible in terms of the exponential integral and

readily evaluated. In writing Eq. (25) the maximum value of g(O), defined prior to

Eq. (22), is taken to be equal to 0.54. Additionally, the effective reflectivity / 4 f

of the optical cavity has been introduced by making use of the formula relating the

reflectivity to the resonator Q, i.e., QL = w(R - r,)/c(- In R/ 11 ) (Ref. 19).

A complete set of parameters for a coaxial waveguide grating FEL using a hollow

cylindrical 105 kV electron beam to generate radiation at A = 45 /Am is given in

Table 1. The start-oscillation current is determined from Eq. (25) by inserting the
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value of x, obtained from a solution of the dispersion relation in Eq. (7). The

output power is given by itlbV, where V is the beam voltage and t7, the finite-

emittance efficiency, is obtained numerically in Sec. I11. By definition, the gain

per pass is given by C = (L./v,)dln(,.4)/dt which, upon using Eq. (23), takes the

form, G = wL./QLv,. Homogeneous broadening of the radiation due to the finite

interaction length is obtained by evaluating 00/8A at constant v, with the aid of

Eq. (22):

S~=

for a resonant interaction.

To evaluate the tunability of this source one may consider the case where the

beam voltage and current are varied while the magnetic field, beam width and cavity

dimensions are held fixed. Figures 3 (a)-(c) show the variation of wavelength, start-

oscillation current and beam emittance with beam voltage. Shorter wavelength

operation necessitates higher beam voltage as indicated in Fig. 3 (a). The higher

voltage, however, leads to a larger start-oscillation current as shown in Fig. 3 (b).

The slight rise in the current towards the low energy end of Fig. 3 (b) is caused by

a reduction in the bunching force of the n = 1 spatial harmonic when the waveguide

gap, R - r., approaches an in gwral multiple of the wavelength. Maintaining the

width of the electron beam, Arb = 2Xb = 2(cv,/SI)l/2, constant-as is done here-

implies a constant normalized emittance, -yo3•, and hence the emittance, c, varies

inversely with voltage, following the curve in Fig. 3 (c).

11



Figure 4 (a) shows the relative axial energy spread, 6,/(y - 1), on the beam.

When 67./(7 - 1) is sufficiently large-as it is towards the low-voltage end of Fig.

4 (a)--excitation of the oscillator from noise becomes impossible; this is discussed

in Sec. III. The homogeneous broadening of the radiation is equal to 0.25% over

the entire voltage range, as shown by the dashed line in Fig. 4 (b). While the

inhomogeneous broadening is comparable to the homogeneous broadening at the

low voltage end, the former drops off significantly with voltage, as shown by the

solid line in Fig. 4 (b).

12



III. Design of Tunable Oscillator in the Far-Infrared

The efficiency, qi, is defined as the fraction of the electron beam kinetic energy

that is converted into electromagnetic radiation energy. The bandwidth of the gain

function, g(E), sets a limit on the tolerable energy spread on the beam and hence

provides an upper bound for the efficiency, which is given by

_ - 1)3/2 (26)

This section presents the results for the efficiency obtained from a numerical

solution of Eqs. (8), (9) and (17) for the electrons comprising the beam. Subsection

A discusses the example of 45 pm radiation and the 68 jsm example is examined in

subsection B. Subsection C examines the tuning characteristics of this source in the

wavelength band 35-55 Atm. In the numerical results presented here it is assumed

that emittance is the predominant contribution to the width of the electron beam

[cf. the discussion following Eqs. (17) and (18)].

A. 45 Irm Radiation

Figure 5 (a) shows the efficiency of generation of 45 Am radiation as a function of

the electric field amplitude of the fundamental spatial harmonic for a cold, infinitely

thin electron beam. The efficiency in this case has been optimized with respect to

the detuning 0 defined in Eq. (22) to obtain the maximum value. For the idealized

case of a zero emittance, infinitely-thin beam, space-charge effects are eliminated

by using a very small beam current. Inserting the corresponding numeiical values,

13



the efficiency according to Eq. (26) is 0.66%, which is to be compared with the

code result of 0.59% indicated in Fig. 5 (a).

The abscissa in Fig. 5 indicates the magnitude of the axial electric field of the

fundamental spatial harmonic, A0. The actual electric field on the conducting walls

of the waveguide at peak efficiency is less than ., 80 kV/cm.

The motion of the electrons in the radiation field is in the form of synchrotron

oscillations in the potential well formed by the slow-wave corresponding to the n = 1

spatial harmonic. The maximum efficiency is obtained when an electron loses all

its initial kinetic energy in the potential well and, in the moving frame, its initial

velocity is reversed. The reversal in velocity is attained after a time -7r/fl ,

where %n0 is the synchrotron frequency. From Eq. (20),

fl,.o { '7 3r[AiIo(rir6) + BKo(xlrb)]1. (27)

In Eq. (27), rb is the radial coordinate of the beam centroid. In this example the

beam is taken to be infinitely-thin and rb is the r coordinate of the beam, i.e., the

distance of the beam from the symmetry axis.

Figure 5 (b) shows the efficiency for a warm, finite-thickness electron beam

(Arb = 25itm). (See Table I for other parameters in this example.) The peak

efficiency indicated in Fig. 5 (b), 77 = 0.41%, is observed to be smaller than the

peak efficiency for the infinitely-thin beam example in Fig. 5 (a).

For a thick beam the synchrotron frequency varies according to the r coordinate

of the electrons. As a consequence of their gyromotion, however, the electrons rotate

14



and sample the transverse profile of the electric field as they cross the interaction

region. Therefore, there is a variation in the synchrotron period of the electrons at

different distances from the surface of the central conductor. Following the analysis

of Ref. 15, it can be shown that the efficiency of a finite-thickness beam is smaller

than that of an infinitely-thin beam by the factor < '/2(K•MX) >, where Io is the

modified Bessel function of the first kind of order 0 and < > indicates an average over

the random variable ý. In deriving this result it has been assumed that the electrons

gyrate many times as they transit the interaction region; i.e., 1/fl/f 0 > 1, where

fl is the gyration frequency defined following Eq. (12) and l,.,,0 is the synchrotron

frequency defined in Eq. (27). Inserting the appropriate numerical values we find

< 0/1 2(r.1 ýXh) >= 1.3, which is to be compared with the ratio of the peak efficiencies

in Figs. 5 (a) and 5 (b), i.e., 0.59/0.41 = 1.4.

B. 68 pm Radiation

Beam emittance and energy spread have a deleterious effect on the operation of any

free-electron source of radiation. The drop in the peak efficiency observed between

Figs. 5 (a) and (b) testifies to this in the case of A = 45prm. In that example the

infinitely-thin beam efficiency is 0.59 %, which is to be compared with the relative

axial energy spread on the beam, 6-t%/(-t - 1) = 0.19%, as indicated in Fig. 4 (b).

Figures 6 (a) and (b) show the efficiency for the case A = 68jrm. In this example

the infinitely-thin beam efficiency is 0.49 %, while 6
2 /(y - 1) = 0.46%. Figure 6

(b) indicates that in this example, where -y6/(-y - 1) is nearly equal to the ideal

15



beam efficiency, growth of electromagnetic energy from noise is impossible. That

is, the oscillator is in the regime of hard excitation.

C. Tuning Characteristics

Figures 7 (a)-(c) summarize the results for a finite-emrittance electron beam over

the wavelength banci 35-55 pm. The limited wavelength band is chosen in order to

avoid the hard excitation regime beyond -, 55 ptm. At the short-wavelength end, the

large start-oscillation currents along with the relatively high conversion efficiencies

(Fig. 7 (a)] lead to the extremely high output power shown in Fig. 7 (b). Figure

7 (c) shows the amplitude, Ao, of the fundamental spatial harmonic at the peak

efficiency. As noted in subsection A, the actual field in the waveguide gap is much

smaller and well below typical breakdown limits.
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IV. Conclusions

We have presented design parameters for a hollow beam-coaxial waveguide grating

FEL utilizing 105 kV electrons to generate 45 pm radiation and described the char-

acteristics for tuning the source in the wavelength band 35-55 jsm. A novel aspect

of the configuration is the use of an annular electron beam streaming through a

coaxial waveguide. This is expected to avoid the edge effects observed with pre-

vious, planar sheet beam, grating experiments. All the design parameters but the

efficiency have been obtained from a small-signal analysis of the pendulum equation,

which describes the synchrotron oscillations of electrons in the slow-wave structure

associated with the corrugated central conductor of the waveguide.

The nonlinear evolution of the electron beam has been analyzed with the aid

of a particle simulation code. This code follows the motion of electrons through

given fields and permits the determination of the conversion efficiency. The code

incorporates the synchrotron and betatron motions of a finite-emittance beam, with

allowance for electron gyro-motion in an axial guide magnetic field. Additionally,

the effects of self-electric and -magnetic fields are included, although for the design

parameters here self-field effects are relatively small.

We have studied and compared the efficiency for two cases, an infinitely-thin

beam and a finite-emittance beam. It is shown by means of a numerical example

that for sufficiently large emittance the oscillator transitions to the hard excitation

regime. When the beam emittance is relatively small, that is, in the soft excita-

tion regime, close agreement between analytical and numerical estimates for the

17



efficiency is obtained.

The point design and the corresponding tuning characteristics indicate that a

far-IR source with output in the kilowatt range is realizable. This source may be

made to be extremely compact. The size and capital cost of the accelerator are

small and relatively little shielding is required. Similarly, the dimensions of the

coaxial waveguide and the magnets for guiding the beam are small. The beam

quality requirements are readily achieved in the laboratory. Finally, the electric

field at which the optimum efficiency is obtained is well below the threshold for

breakdown.
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Table 1
Wavelength A 45 ILM

Voltage V 105 kV
Current Ib 10.45 A
Radiated Power 4.5 kW
Efficiency 17 0.41 %
Guide Magnetic Field BO 6 T
Beam Emittance 0.8 w - mm - mrad
Electron Beam Width Art 25 pm
Gain/Pass G 94 %
Resonator Length L, 1 cm
Grating Pitch d 25 Am
Groove Width s 12.5 pm

Groove Depth b 12.5 JAm
Radius of Outer Conductor R 5 mm
Radius of Central Conductor r. 3 mm
Effective Reflectivity Rt l 90 %

Quality Factor QL 2661
Homogeneous Broadening (6A/A)I,• 0.25 %
Inhomogeneous Broadening / 0.07 %

Design parameters for a grating FEL

operating at 45 gtm using a 105 kV electron beam
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Figure 3: Variation of (a) wavelength, A, (b) start-oscillation current, Ib, and (c) unnor-

malized emittance, c with beam voltage.
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Figure 4: Variation of (a) relative energy spread, b-yl/(7 - 1), (b) homogeneous broad-

ening, (bA/A)ho,,,, (dashed line) and inhomogeneous broadening, (6A/A),1 •,

(solid line) with beam voltage.
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Figure 5: Efficiency, -q, versus amplitude of fundamental spatial harmonic, A0 , for A

45pro radiation using a 105 kV beam. Beam axis is 12.5 pm above grating

surface. (a) Infinitely-thin beam. (b) Finite-thickness beam with full trans-

verse motion (Arb = 25 pm). Maximum electric field in waveguide at peak

efficiency is less than ; 80 lW/cm.
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